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Abstract Dynamic programming (DP) can be used to analyse natural resources problems that have a temporal
dimension. Model specification consists of two parts. Firstly, a transition system {specific to the natural resource) is
applied at each time stage. Secondly, a dynamic programming algorithm identifies the optimal solution at each stage.
The transition system is unique to each problem, while the dynamic programming technique is more generally
applicable. Previous applications of DP have usually required expertise in program coding. Therefore each model
required coding of the transition system and the DP algorithm. The application of DP can be simplified significantly if
the two parts are decoupled. We use a graphical user interface {GUY) simulation package to decouple the transition
system from the dynamic programming algorithm. The GUI allows each component part 1o be represented by a module.
The transition module receives input state and decision vectors, and returns the appropriate output state vector. The DP
module specifies dimensions of stages, states and decisions, and transformation of input state and decision vectors inio
the output state vector. The simulation advances one stage for each combination of input state and decision vectors, At
the end of the simulation the DP module processes the transition output at each stage and reports the optimum decision
for each stage. Using GUI to decouple the dynamic programming algorithm from the transition system allows the user
to concentrate on the problem formulation, which can be connected to a standardised dynamic programming algorithm
that suits natural resource problems. The method is illustrated in a case study of the control of wild oats. Interpolation
methods to overcome the "curse of dimensionality” are considered for continuous state vectors, with decision vectors
that may or may not be continuous,

LINTRODUCTION * The transition system may be a mixture of random
variables, plus controllable decision variables (such
The Department  of Natural Resources  and as how many fishing vessels to licence, or treatment
Eavironment has the responsibility of advising the options for weeds in a crop).
Victorian Government on a wide variety of natural
resources  policy issues, ranging from agriculture, » For each stage, the benefits and costs of the output
fisheries, forestry to salinity, acidity and river health, states and of the chosen decision variables are
combined to determine a solution to the objective
An important component of policy research is the study Junction. This objective function will commonly be
and modeling of dynamic natural resource systems. some measure of benefit which is either maximised
Typical features of such systems are: or minimised (revenue or costs respectively). Often,
the measure of benefit will be expressed as a net
= They are multi-stage (multiple time periods or cash flow.
temporal in pature), with each stage commonly
representing a year or a season,. » Since the system is modeled over multiple stages,
the benefits achicved in one stage may be to the
» They have muliiple state variables, such as fish detriment of benefits at another stage. It is therefore
population, state of the soil, procreation rate, seed necessary to combine the objective function values
bank etc. across stages to yield a multi-stage solution. This
combination across stages is commonly achieved by
» The oulput state(s) at the end of each stage are discounting later stages at some appropriate discount
determined by the input states at the beginning of the rate, and then adding the discounted future benefits
stage. The change in state from the beginning to the to obtain a “pet present value”. The net present valus
end of each stage is determined (calculated) by the (NPV} can be considered as the overall objective
transition equation. function for the multi-stage dynamic system.
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Modeling a natural resource system aids decision
makers by allowing them to test the impact of
alternative policies. The analyst therefore needs to
identify the slate variables, an objective function and
the decision activities that influence the system being
modeled.

Given these, at any stage a set of decision variabies and
input state variables will generate a set of output state
variables. This transition system {from input to output
state) also needs to be identified.

The problem can become very complex because, for
cach possible set of input state variables at each stage,
the set of decision variables can produce a different set
of output state variables, which in turn are the input
state variables for the next stage. One approach to this
problem is to use dynamic programming {DP). A clear
introduction to DP is provided by Kennedy [1986].

1.1 Dynamic Programming

Consider a sysiem with a finite number of stages, and
with state and decision variabies that can each take on
a finite number of discrete values. We shall refer to a
set of state variable values as the sysiem state.

The dynamic programming procedure comprises two
parts. First it works backwards from the last stage to
the first, identifying at ecach stage the optimum
decisions for each possible starting state. Then the
procedure works forward from the starting state of the
first stage to the last stage, identifying the optimum
sequence of decisions.

Beginning with the last stage, we apply the transition
system to identify the optimal decisions to be made for
cach possible starting state. An objective function value
can thus be ascribed to each possible starting state of
the last stage. Discounting by one period, we thus have
the optimal objective function value and decision for
each possible ending state of the previous stage.

We then turn our atiention to the second last stage. For
each possible starting state we again identify the
optimal decisions. This time, we include in the
abjective function the discounted value of the ending
state (brought back from our evaluation of the last
stage).

The procedure is repeated for each previous stage,
evaluating the optimal objective function vatue for
¢ach possible starting state, which is then discounted
by one period to provide the objective function value
for each possible ending state of the previous stage.

When we arrive at the first stage, we find we now have
the objective function value for each possible starting
state of the first stage. Identifying the actual starting

1531

state of the first stage, we have found its iotal net
present value, the optimum decision to make in the first
stage, and therefore the end state of the first stage. This
corresponds to the optimal starting state of the second
stage. We can thus continue forward stage by stage,
reconstructing the optimal state and decision history
that witl vield the best achievable net present value.

Some idea of the benefits (and limitations) of DP can
be achieved by considering the dimensionality of the
prohlem.

Consider a system with “T7 stages, "N” possible states
at the beginning and end of each stage, and “M”
possible combinations of decision variables at each
stage. The total number of possible decision policies
over the T stages is M', known as total enumeration.
However using backwards incursion, a feature of DP,
the number of policies to be evaluated for each stage is
NM. By the time we have worked back though the T
stages, the DP will have evaluated TNM policies. If T,
N, and M were each 10, the DP would require
evaluation of 1,000 out of the possible 10“ policies,
reducing the search field by a factor of ten million.
However, it should be noted that if T, N and M are
large, the product TNM can still be enormous - the
“curse of dimensionality”.

If the state or decision variables are continuous, the
curse of dimensionality is poteniially infinite, though
various treatments of continucus variables have been
proposed. The use of interpolation to deal with the
curse of dimensionality will be considered later in this

paper.

This paper will consider the application of dynamic
programming (DP) to the optimisation of multi-stage
natural resource systems, and report upon some work
applying graphical user interface (GUI) technigues
through a simulation package to simphify and
standardise the use of DP. The approach wili be
illustrated by a case study.

2. METHODOLOGY

Each natural resource system is likely to differ in the
nature of its state and decision variables, and in the
transition of the states between stages. This has
required previous appiications of DP to be problem and
coding specific.

Usually, the transition system is independent of the
stage. One set of decisions applied to an input set of
state variables yields a new set of output variables, for
each stage. Also, the transition system is much easier
to code than is the DP process. If the user could
concentrate on specifying the transition system without
having to worry about the DP optimisation, the
application of DP could be greatly simpiified.



However, it would be tedious and inefficient to have
themn as separate programs, where the output of one
had to be fed as an input to the other,

A graphical user interface (GUI) provides a means of
decoupling the transition system from the DP
optimisation while keeping them integrated in the one
modeling environment.

2.1 Modular Representation

Cur approach has been to implement the DP algorithm
using the GUI simulation package Extend™, enabling
us to model the transition system and the DP
optimisation as two interconnected modules.

Extend™ is designed for building simulation models as
interconnecting blocks, linked by flows. The logic
within each block can be programmed in a dialect of
“C7, and animations can easily be displayed. The
simulation features of Extend are particularly suited to
the characteristics of transition systems in DP
problems.

Each biock in Extend has an “icon”™, or block picture,
with flow connectors. Double clicking on the block
icon causes it to open up to show a “dialog window”,
which displays parameters that can be set. Results can
also be displayed in the dialog window.

Hach block also has a “structure window™ which can be
opened up to examine or edit its program code.

We used two Bxtend™ blocks to model the transition
system and the DP optimisation, as shown in Figure 1.

Start State HrStart State
Decision [7—F&] Decision
End State @—€1 End State
Eamings [B-—E] Earnings
Transition op
Module | __ Module

o,

Figure 1: The Dynamic Programming Model

The interconnections allow vector information to flow
between the modules. When the DP Module requires
an evajuation, it sends the “Start State” and “Decision”
vectors to the Transition Module. The Transition
medule uses these inputs to compute the “End State”
vector and the “Earnings”, and returns these quantities
o the DP Module,

The Transition Module is problem specific, and can be

coded {or the Extend module programming capacity
can be used, removing the requirement for language
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specific coding skills) in the language C to represent
the appropriate state transition for any particular
problem, or problem type. If desired, animation can be
added to iilustrate the relationships between the stale
and decision variables. Within a problem class, the
module’s diafog window can be opened to set relevant
parameters controlling the transition.

The DP module is generic, and does not need to be
coded for each problem. The moduie has a dialog
window which can be opened to set the dimensionality
of the state and the decision vectors, and the possible
discrete values they can take. It also allows an output
text file to be specified for the simulation results.

3. CASE STUDY - WILD OATS IN WHEAT

The problem of wild vals in wheat has been analysed
by a number of methods and levels of sophistication
(referred to in Jones and Medd 1997). The DP method
developed in Jones and Medd {1997] incorporates
summer and winter crop activities and winter faliow.
The decision alternatives Include leaving the land in
winter fallow, and planting sequences of sorghum or
wheat. The wild oats may be subject to management
options of no control, plant kill, seed kill, or both plant
and seed kill.

The critical state variable determining the weed
population is the wild oat seed bank. In a single
generation, some seeds germinate to scedlings, of
which a proportion survive to maturity and deposit seed
to the seed bank. To capture the asynchronous
germination of wild ocats through a seasen, three
cohorts are simulated each year (or stage) of the model.
The residual seed remains dormant with a proportion
carrying over to germinate in the following year.

Plant survival and seed survival depend on the wild oat
management options of no control, plant kill, seed kill,
or both plant and seed kill.

Using the model of Jones and Medd [1997], for each
stage a decision musi be made as to which of fifteen
possible treatment options to use. There are also two
state variables to be taken inio account, the state of the
tand (ascribed fifteen possible values) and the density
of the seed bank {ascribed 5,000 possible values).

Figure 2 shows the dislog window of the transition
maodule, in which can be entered the paramesters needed
for the transition computations of the Jones and Medd
[1997] model.



Wheat Price 133 | Sorghum Price 139
Wheat Variable Cost 118.38 Sorghum Variable Cost 154,04
Yield Wheat] 35 Yield Sorghuml 375
Yield Loss Wheat2 0.2 Yield Sorghum?2 1.8
Yield Loss Wheat3 0.4 Delta | 104.4
Control Costs:- Theta 1.22
Winter Fallow 31.08 Gamma | -1
Herb Seed 19.31 Germinate 0.5
Herb Plant 254 Becay Rate 0.73
Control Parameters
How pm_ci pn_g2 pm_¢3 g5 _¢1 S5 ¢2 58 ¢3
i 0.85 0.15 0.75 0.6 08 08
i 085 075 075 0.5 05 05
2 0.85 0.15 0.5 0.2 0.2 0.2
3 0,85 0.75 0.75 9.2 0.2 0.2
4 1 | 1 0 0 0
Plant Kill Parameters Cohort Composition
Row Alpha Lambda Epsilon Row % (=1}
0 256 Q.74 0.88 ] 03
)i 78 1.2 0.8 1 0.6
2 6.8 2 0.67 2 0.1
Seed Kill Parameters
Fow Alpha Lambda Epsilon Phytotoxicity Seed Kill 0.02
0 742 2.04 0.66 )
; 740 204 0.66 Phytotoxicity Plant 0.01
2 7.42 2.04 0.66

Figure 2: Transition Module Dialog

The Transition Module is programmed to compute the end
state values and earnings for a stage, given the input starting
state values (seed bank, iand history) and the decision values
(weed treatment). The inputs are received as vectors from
the DP Module, and the computed end state vector and
earnings are outputs transferred back to the BP Module.

Figure 3 shows the dizlog box for the DP Module. The
problem: can be named, and an output text file nominated to
record the results of the simulation. The example shown is (o
be compuied for ten stages (years) and the earnings are to be
giscounied at a rate of 10% per annum.
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The DP Module is programmed to cope with problems
having up io five state variables and up to five decision
variables. This example uses only two state variables (15 and
5,001 values respectively) and one decision variable (with 15
possible values):

It would of course be equally feasible to reformulate the
problem with a greater number of state and decision
variables, each having a lesser number of possible values.
Initial values of the state variables are alse set in this
window.



Dynamic 2 Problem Name

OutEig.txt

®) Create New File
(O Append to Existing File

Cutput File Name

10 Number of Decision Stages
10 % Discount Rate
State Variables - State{0]...[4]

Fow Minimum Maximum
1] 0 14
1 0 5000
2 0 0
3 0 Q
4 0 ]

Row | Grid Interval Initial Value
0 1 0
1 1 5000
2 1 0
3 1 0
4 1 0

Decision Variables - Dec[0]...{4]

How Minimum Maximum
1 0 14
i o 0
2 0 ]
3 [ 0
4 0 0

Figure 3: DP Module Dialog

To explore the effects of the trade-off between accuracy and
the curse of dimensionality, each state variable can be
ascribed a grid interval. For example, a state variable with
values ranging trom 0 to 100, and a grid interval of 5, would
have possible values of 0, 5, 10 ... 95, 100. Thus the matrix
dimensions can be reduced by increasing the grid size.

The output file generated by the simulation is shown in
Figure 4. It shows that the optimum earnings achievable
have a discounted net present value of $1,190, and are
achieved by applying decision 1 in years 0, 2, 4 and 6,
alternating with decision 0 in years i, 3, 5 and 7. Finally,
policies 3 and 7 should be applied in years 8 and 9.

It is of interest to note that maximising the ten-year net
prasent value reguires losses be made in years 1| and 3.
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The end states for each stage (year) are not shown, since they
are the beginning states for the following year. The final
state of year 10 is displayed, in order to give the beginning
state of the eleventh year, at the end of the period computed.
No decisions or earnings are shown for this eleventh year,
since the planning horizon for this run is ten years.

4. DISCUSSION AND CONCLUSIONS

We have considered the use of a graphical user interface
simulation package to decouple the transition systemn, which
tends 10 be problem specific, from the dynamic
programming which we have formulated generically. This
decoupling enables the practitioner to specify the transition
system and use dynamic programming without having to be
involved with a difficult programming task. The method has
been Hlustrated successfully using a real-world agricultural
problem.

Some problems remain to be considered, In particular, the
method depends upon state and decision variables being of
discrete rather than continuous vaiues. If too many values are
possible, then the curse of dimensionality sets in.

Cne approach to the curse of dimensionality is o use
interpolation. A fairly coarse grid of state and decision
variable values can be constructed. Starting with the coarse
grid decisions and starting states, computed end states may
be found to lie between the grid vajues. In carrying out the
forward induction, these intermediate end state values can be
ascribed earnings and subsequent decision histories
interpolated from their neighbouring grid values. While
superficially attractive, this approach assumes that the
relationship between state and optimum decision policy is
continuous. This assumption needs to be tested on a natural
resource system before it is apphied. One way to do this has
been envisaged in our model design. By repeating runs with
the grid interval set successively finer (see figure 3),
incongistency in results would be indicative of important
discontinuities in the relation between the initial state and the
optimum decision policy.
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Optimal Path for Dynamic Program, EIGEN "Dynamic?” Run, 3:49:52 PM, 28/7/97

Stages States Decisions! Discount Rate
13 75015 15 10%
State} Statei  State] State| State] Decis.! Decis.] Decis.| Decis.] Decis.
Min [0] 1] [2] 3] [4] [0 f1] (2] [3] 4]
Max 0 0 ) 0 ] {} 0 0 0 0
Iner 0 {} 0 O 0 0 4] 0 0 {
Begin] State] State] Statel  Siate!  State| Decis.| Decis.| Decis.] Decis.] Decis.i  Eam Farn
Stage [03 1} [2] 3] [41 0] {1] [Z1 [31 [4]] Stage] Cumul.
0 0 5000 ] 0 0 1 0 0 0 01 $3331 $1.190
1 11 3000 ) 0 0 { 0 0 0 01 -328] $943
2 0 706 0 0 0 1 0 (0 0 Ol $333] $1,068
3 1 706 0 {0 4y 0 0] g 0 0 -$281  $50R
4 0 99 Y 0 {} ! 0 0 0 0f  $333] 3920
5 1 G 8] {} 0 0 0 0 {} 0] -%528; %645
6 0] 13 Q0 ] 4 1 0 0 0 01 $333] $741
7 1 13 0 0 0 0 0 {} 0 Ol  -$281 §$448
b 0 1 0 0] 0 3 0] 0 0 01 $3151 $524
9 3 0 0 0 0] 7 ] 0 ] 0f 32301 %230
10 7 0 (} 0 0

Figure 4: The Output File
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